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On the Superfluid Fraction of an Arbitrary
Many-Body System at T= 0
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I derive a set of sufficient and (barring certain pathologies) necessary conditions
for a one-component system with velocity-independent forces to have a super-
fluid fraction pjp equal to unity at zero temperature: In addition to a condition
closely related (but not obviously equivalent) to the usual one of off-diagonal
long-range order, the ground state should possess unbroken invariance under
both spatial translation and time reversal. Some generalizations are made to the
case of multicomponent systems.
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Consider an arbitrary system of neutral particles for which the thermody-
namic limit, understood in the usual sense, exists. The superfluid fraction o
such a system may be defined by the following standard thought-experiment:
Place the system in a large, approximately cylindrically symmetrical con-
tainer of annular or toroidal shape, such that the circumference 2nR is
large compared to the characteristic transverse dimension d and the classi-
cal moment of inertia 7cl is thus, to zeroth order in d/R, given by 2nR3Ap
(=NmR2 for a single species), where p is the average mass density and A
is the cross-section of the torus. Now rotate the walls of the container with
an angular velocity a>, and require that the system be in thermodynamic
equilibrium as viewed from the frame of the rotating walls. The superfluid
density ps(T), or equivalently the superfluid fraction pjp, is then defined
by the relation

where <L> is the expectation value of the mechanical angular momentum.
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Two points should be noted about the definition (1). First, it is of
course implicit that the limit exists, and thus that the expectation value of
<L> with the walls stationary is zero; and we will actually make, below,
the rather stronger assumption that time reversal symmetry is not spon-
taneously broken in this state. Secondly, the definition relates to a state of
thermodynamic equilibrium; it is emphatically not implied that the fraction
of the system which can sustain circulating supercurrents (a thermody-
namically metastable phenomenon) is necessarily given by the quantity
fs{T). In this connection I mention a rather tricky point relating to the
precise meaning of the limit on the right-hand side of (1), and the related
thermodynamic limit: we should take N-* oo, d, R-> oo, a>-+0 in such a
way that d/R -> 0, mR2co/h -> 0 but NmR2co/h -> oo.

Given the definition (1) of the superfluid fraction f,(T\ it is imme-
diately obvious that there exists a large class of systems for which this
quantity is zero at all T. Indeed, at present there exist only two neutral
(terrestrial) systems which have been actually demonstrated experimentally
to have a nonzero value off3(T) at any T, namely the two stable isotopes
of helium in the liquid phase. (The general belief is that the recently stabi-
lized Bose-condensed phase of the atomic alkali gases will also have a finite
superfluid density, but this has not yet been explicitly established). Now, it
has been established with fair confidence in the case of 4He, and is at least
consistent with experiment (and generally believed) in the case of 3He, that
the quantity fs(T) satisfies the relation
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or in words, that the whole liquid is superfluid at zero temperature. The
aim of the present essay is to discuss the status of Eq. (2) from a theoretical
standpoint: that is, to ask the question: What are the necessary and suf-
ficient conditions for Eq. (2) to be true in an arbitrary many-body system?
While it is clear that this question is closely related to the issues discussed
in some classic papers of the 60's (e.g., those of Yang,(1) Kohn,(2) Kohn and
Sherrington(3) and Bloch(4)), I am not aware of any place in the existing
literature where it is explicitly discussed in a model-independent way. The
present discussion may be regarded as a continuation of the line of thought
developed in refs. 5-7.

Before embarking on the general question, let's briefly review some
relevant results which can be obtained within specific models or assump-
tions. First, in the case of a translation-invariant Fermi system which forms
Cooper pairs in a way such that the ground state and low-lying excitations
are well described by the simple BCS theory, it is straightforward to show
that the superfluid fraction is just 1 — Y(T) where Y(T) is the so-called



Yosida function; since the latter tends to zero in the limit T-*0, Eq. (2) is
automatically fulfilled. This result is independent of the symmetry of the
pairing state, and moreover remains true(8) in the model of a "superfluid
Fermi liquid," that is a system which forms Cooper pairs on the back-
ground of a normal Fermi liquid as described by the Landau theory, even
though in this case the general formula for fs(T) at arbitrary T is more
complicated. Secondly, Eq. (2) is obviously trivially true for a noninteract-
ing Bose gas, and Gavoret and Nozieres(9) have shown that for an inter-
acting Bose system such as 4He it remains true provided that the system
can be described by perturbation theory starting from the free Bose-con-
densed gas. Thirdly, at first sight, at least, the relation should hold true for
any system which has a superfluid phase describable by the standard
Landau two-fluid hydrodynamics. The argument(6) goes as follows: if the
superfluid velocity ys(rt), total mass current density j(rt), pressure P(rt)
and chemical potential p.{rt) are defined in the standard way, then in the
long-wavelength, low-frequency limit where the two-fluid hydrodynamics
applies we have
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However, in the limit T-+0 the Gibbs-Duhem relation implies that
¥P = p¥p-, from which we have in the limit vs-+0j = pvs + f(r), where f is
an arbitrary function of position but is independent of time. If we require
that this result agree with the general two-fluid formula j = psys + pnyn

(Pn = P — Ps)-> we see that f must be identically zero and thus at T = 0 e
have ps = p, i.e., Eq. (2) is satisfied. However, the apparent generality of
this result is spurious, as one can see for example by considering a
3He-4He mixture under the assumption (which may not be true but is at
least not obviously internally inconsistent) that the 3He quasiparticles do
not form Cooper pairs; in this case we should expect a finite normal den-
sity pn at zero temperature, and indeed it turns out that the hydrodynamic
"derivation" fails, since the Gibbs-Duhem relation no longer has the simple
form involved above. This example shows that Eq. (2) cannot be generic to
superfluid systems, even those with overall translation invariance. In any
case, to establish a static property by an argument based on dynamics
seems anomalous; in fact, it may be argued that the very use of two-fluid
hydrodynamics in some sense begs the question.

In the bulk of this paper I shall consider a system of identical particles
of mass m and without internal degrees of freedom, interacting via a two-
body isotropic velocity-independent potential (generalization to the multi
component case will be made at the end); I make no particular assumption
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about the statistics obeyed by the particles. Thus, if we denote the coor-
dinate of the ith particle by r(, the ground state wave function f/

o{rt] for
boundary conditions at rest satisfies the equation

where U{rt) is an appropriate potential describing the confining effect of the
container; it is convenient to allow this to have small deviations from exact
cylindrical symmetry. A crucial role in the argument below is played by
the "single-valuedness boundary condition" (SVBC); to introduce this we
re-express the variable r, in terms of an angular variable #, and two "trans-
verse" coordinates ;/, whose precise definition is unimportant for our pur-
poses. Then, for the walls at rest, the SVBC reads

i.e., in words, the result of taking any one particle once around the annulus,
leaving the rest unchanged, should be to recover the original wave function.

Now, there is a standard argument (cf. e.g., ref. 5), which demonstrates
that the definition (1) above of the superfluid density is equivalent to the
following one: Let VArf,{r,} be the wave function which minimizes the
expectation value of /? (Eq. (4a)), but now subject not to the condition (5)
but to the modified SVBC

and let E{Aq>) be the corresponding lowest energy eigenvalue. As explaine
in ref. 5, a given value of Acp corresponds to a value of co equal to
(h/2nmR2) • Acp. Then the definition (1) at 7 = 0 is equivalent to

—a result which is sometimes expressed by saying that the superfluid
density is the "sensitivity to twist of the boundary conditions" or "helicity
modulus." It is important for the subsequent argument that, as follows
from the remark about the meaning of the limit in (1) and the relationship
between Acp and co, the notation " l i m ^ ^ o " in Eq. (7) should be understoo



Superfluid Fraction of Arbitrary Many-Body System at 7=0 931

in the sense that N ' «Aq> «. 1. Note that in the special case that ¥%,{/",}
is related to ^{r ,} by a "Galilean shift," i.e., by the relation

the quantity d2E/d{Jcp)2 is just Nh2/mR2 and thus Eq. (2) is satisfied.
At this point I will assume that the Hamiltonian H has the property

of invariance under time reversal and that the latter is not spontaneously
broken in the ground state. Then quite generally (and independently of the
statistics obeyed by the particles) the ground state wave function f/

o{ri}
can be taken real, so that the expectation value of the current operator
everywhere vanishes. Given this state of affairs, it is straightforward to
obtain various upper limits on the zero-temperature superfluid fraction
f̂ (O) from variational ansatze of the form

where the real quantity <P{rt} must be symmetric with respect to the inte-
change it^j (independently of the statistics!) and satisfy the SVBC
0(6i + 2n) = 0(9t) + Acp, V{r,}. An ansatz of the form (9) leaves both th
external and the interparticle potential energy unchanged, so that the
associated increase in energy AEtrial has the simple form

The simplest implementation of the above scheme is the choice

which clearly satisfies the above conditions. On minimizing the energy (10)
with respect to the form of <p{6) and inserting into the definition (7), w
obtain(5) an upper limit fs on fs(0) of the form (cf. Appendix)

where p(9) is the single-particle density averaged over the cross-section of
the annulus and po its average over 6. The inequality, valid for any positive
function g, <g><g~ l>>l ensures that / / ^ l , the upper limit being
obtained only for p{0) = const.; we thus see that the condition of uniform



(with respect to 8) single-particle density is a necessary, though not suf-
ficient, condition for the validity of Eq. (2).

The problem of obtaining a lower limit on fs(0) is considerably more
delicate. Let us assume for the moment that the true wave function ¥Aq>{r^
is of the form (9), so that the corresponding energy is given by the RHS
of Eq. (10). We may be able to find a lower limit on this expression, if we
can split it up into two terms Ex and E2, of which E2 can be demonstrated
to be positive, and minimize £ , exactly under conditions which are not
more restrictive than the actual ones (though they may be less so).

The most obvious implementation of this proposal is to replace the
sum overy in (10) by N times one of its members, say k, and to minimize
the expression so obtained subject to the single SVBC <P{6k + 2n) —
<P{6k) = A<p, V{r,} with no restriction of symmetry imposed. (So fa
E2 = 0). In words, we are asking "how much energy does it cost to deform
the wave function of the kth particle, at a constant configuration of the
other N— 1 particles, so that the phase accumulated on going around the
annulus is AcpT If the many-body wave function Vo{r,} is positive definite
everywhere in the configuration space, a lower limit on the resultant expres-
sion can be obtained by now taking E2 to be the "transverse" part of the
kinetic energy in (10), and solving explicitly for q>(6k: {£}) (where {£,}
indicates all coordinates other than 6k, including the "transverse" coor-
dinates of the kth particle). The result, expressed as a formula for a lower
limit f~ on fs(0), is (Appendix)
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where po(^, 6k) is the square of the (normalized) many-body ground state
wave function *Po{dk, £,). Unfortunately, the expression on the RHS of (12
is likely to be much smaller than 1, because when the particle k traverses
the annulus "at constant transverse coordinate," i.e., on a circular path, it
is very likely to encounter regions already occupied by other particles
where its probability density is small; indeed, if the mutual interaction of
the particles includes an infinite repulsive hard core of finite radius, then we
should expect that in the thermodynamic limit the RHS of Eq. (12) would
be zero, making the limit trivial. However, it follows from the analysis of
Section C of the Appendix (with the assumption made there on the
Jacobian) that even in this case the answer to the question posed verbally
above will be finite (and an N-independent factor times {h2/mR2){A(p)2 in
the thermodynamic limit) unless there exists at least one hypersurface in the
many-dimensional (6, £) space which any path {0, {£}) -> {6 + 2n, {£})
must intersect and on which ¥o(0, £) vanishes everywhere. (Here and in



Superfluid Fraction of Arbitrary Many-Body System at 7=0 933

the following, I shall use the phrase "a (nodal) hypersurface exists" as a
shorthand for "such a surface either literally exists in the ground state wave
function Vo{rJ, or can be introduced into it by a deformation which costs
an energy which in the thermodynamic limit is at most of order N~ln:
cf. the usual definition of spontaneously broken symmetry) If such a hyper-
surface does exist, then the "relative phase" of the many-body wave func-
tion at 8 and 6 + In is not defined; I return to this point below. For the
moment it is enough that the lower limit on fs(0) calculated from the above
"single-particle" argument, while it may not be easy to calculate explicitly,
is not identically zero: cf. Appendix.

A more fruitful separation of the terms in (10) is into center-of-mass
(COM) and relative coordinates. We introduce in the standard way the
"angular COM coordinate" 0 by

and a set of 3N — 1 other coordinates £,' whose precise choice is of no co-
sequence: the important point is that the RHS of Eq. (10), (call it E_) can
be written in the form

where E2 is a positive functional of the gradients with respect to £,'. We
minimize the term E} with respect to the functional form of &{0, £') sub-
ject to the (incomplete) SVBC &{0 + 2n, {<*'})-<P(0{?}) = N-Acp,
V{<f'}. The result, expressed in the form of a (prima facie!) lower limit f~
on fs(0), is

Expression (15) at first sight looks analogous to (12). However, the impor-
tant difference is that while, as we have seen, for fixed £ in (12) there may
be regions of 0 where the quantity po(9, £) is small or even zero, in (15) the
quantity po{0,£') is very likely to be quite uniform in & even for fixed <f'.
In fact, if (a) the Hamiltonian is invariant under rotation around the axis
of symmetry (i.e., in the thermodynamic limit, translation-invariant), and
(b) this invariance is not spontaneously broken in the ground state, then
po(0, £') must be independent of 0 for all £,', and hence the "lower limit
f~ becomes unity. Note that this conclusion is completely independent of
the statistics obeyed by the particles, or of the details of their interactions.



Because our definition of the superfluid fraction (see above) relies on values
of Acp which, while small compared to 1, are large compared to N~\ the
modification introduced in (16) is not at all trivial. What it means is that
as regards the SVBC on the COM coordinate 0, we are always free to
choose the LHS of Eq. (16) to be ^n, and the corresponding lower limit
(14) is then multiplied by a factor of order Af~2, making it indistinguish-
able from zero for all practical purposes.

Why then are not all many-body systems "normal" at 7" = 0
(fs(0) = 0)? The answer is of course that while our earlier SVBC was in a
sense too restrictive, Eq. (16) is not restrictive enough; we need to go back
to the original requirement (6). If the "single-particle phase difference"
{<P(8k + 2n, {£}) — <P(6k, {£})) is well-defined, then by symmetry it mu
be equal to N-*[&(&+ 2n, {£'} -<Z>(6>, {£'})], and hence the RHS of
(16) can take only the value N Acp (for Acp « 1); in that case the argumen
leading to (15) goes through and we indeed conclude that if the system is
translation invariant then Eq. (2) holds. Now we saw above that a suf-
ficient condition for the single-particle phase difference to be well-defined
was the absence of a "nodal hypersurface" of the kind described. Thus, such
absence, plus translation invariance, is a sufficient condition for Eq. (2) to
hold. Note that it is irrelevant whether there exist hypersurfaces on which
*PO takes a very small value, provided only that this value (call it e) doe
not tend to zero in the thermodynamic limit; in particular, e can be as
small as we like and f^0) will remain unity! (It is tempting, here, to make
a connection with a well-known characteristic of superfluid 4He, namely
that provided the "condensate fraction" is finite in the thermodynamic
limit, its actual value is irrelevant to the superfluid properties).

The above condition, while sufficient, is of course not necessary; even if
the "one-particle" trajectory (9, {£})-• (9 + 2K, {£}) crosses a nodal hyper-
surface, the two-particle trajectory (9X,92, {C})->(dl + 2n,02 + 2n, {£"})
need not do so, and if it does not then the argument for (15) goes through
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At first sight this conclusion is alarming, since combined with the
result (11), it would appear to imply that any translation-invariant many-
body system will be superfluid at 7 = 0 , with a superfluid fraction equal to
one. The resolution to this pseudo-paradox lies, of course, in the observa-
tion that even if the true wave-function ^^{r,-} satisfies Eq. (9) (for the
case that it does not see below), the form of the SVBC we imposed in the
above a rgument namely &(0 + 2n, {£})-0(&, {^'}) = N-Acp, V{£'}, is
actually more restrictive than the (relevant part of) the true one, which in
fact reads



just as in the one-particle case. More generally, we expect (15) to be valid
if there exists any "low-order" value of n (i.e., « of order 1, not of order N)
for which the "order-n trajectory" (dl,01---en: {C})-^(&i+2n, 02 + 2n
· · ·6n + 2n: {£,"}) crosses no nodal hypersurfaces. On the contrary, if one
or more such hypersurfaces which are not dictated by symmetry exists, we
can always use it to put in the appropriate arbitrariness of the phase and
fs(0) will be zero (or of order N~2, see above).

All the above analysis of the lower limit on fs(0) is based on the
assumption that the true wave function ^^{r,}, which minimizes the
energy subject to the boundary condition (8), has the form given in Eq. (9).
What if it does not? In this case we can, quite generally, replace the func-
tion *P0{rt} in (9) by some other real wave function ¥*'{/-,-}; with this
replacement the above arguments go through verbatim (note in particular
that there is no term in the energy linear in V<£), with the exception of the
fact that there is now an extra term in the quantity E(Acp) which is simply
the difference between the quantity < W'o \ H | ¥"„> s E'o and the true groun
state energy Eo = < ¥"o | H | !P0>. We see in particular that a necessary con-
dition for fs(0) to be less than unity is that ¥"o possess nodal hypersurfaces
of the type described above. However, this condition is not sufficient: the
term E'o — Eo leads to a (positive) term in fs(0) which is proportional to
(Aq>)~2, and since quite generally f^(0) is bounded above by unity and the
lower limit allowed on A<p is proportional to N~1, the quantity E'o — E
must vanish in the limit N-+ oo (actually as / J 1 , cf. Eq. (7)). Thus, in this
case, even though the true ground state wave function ¥„ need not have
the relevant nodal hypersurfaces, it must be possible to deform it into a
wave function (Wo) which does have them at a cost of an energy which
tends to zero at least as fast as N'1 in the thermodynamic limit. Thus,
the condition that "a nodal hypersurface exists," if interpreted in the
generalized sense defined above, is indeed fulfilled.

It is clear that the criterion of the existence or not of a (non-symmetry-
dictated, NSD) nodal hypersurface for the trajectories of order n is closely
related to the concept of the existence of off-diagonal long-range order
(ODLRO) (1) in the order-« correlation function; at first sight, at least, we
might expect that the existence of an NSD nodal hypersurface would imply
the absence of ODLRO and vice versa, so that our criterion for (15) to be
valid would reduce to the usual criterion for superfluidity,(1) namely the
existence of ODLRO in some low-order ( n ~ 1, not ~JV) correlation func-
tion. Actually, while there seems no obvious reason to doubt the proposed
connection for a boson system (where there are no "symmetry-dictated"
nodes), the question becomes rather delicate for the Fermi case. Indeed,
even in the apparently trivial case of a free 3D spinless Fermi gas, while it is
clear that the system does not possess ODLRO in any low-order correlation
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function, it is not immediately clear that it automatically possesses the
NSD nodal hypersurfaces required by the above argument. We may obtain
some clues by considering the (distinctly pathological) case of N free fer-
mions on a 1D ring;(7) this system is known to have f^0) = +1 when N is
odd but a negative superfluid fraction, f,(0) = — 1, when N is even (a cas
violating our original condition of no spontaneous breaking of time rever-
sal symmetry in the ground state), and this behavior is associated with the
presence, in the latter case but not the former, of an NSD nodal hypersur-
face. My guess is that the 3D Fermi system manages to produce, at the cost
of an energy which tends to zero in the thermodynamic limit (cf. above),
NSD nodal hypersurfaces which in some sense average over the above
behavior so as to give fs(0) = 0; but the precise way in which this happens
is likely to depend strongly on the details of the geometry, and I have not
explored it in detail at the time of writing.

To summarize the results of the discussion so far: For a simple one-
component system with velocity-independent forces, a set of sufficient con-
ditions for Eq. (2) to hold is that2

(1) at least one low-order trajectory fails to intersect any NSD nodal
hypersurface, and (Cl)

(2) the Hamiltonian is invariant under translation and time reversal,
and neither of these invariances is broken in the ground state (C2)

We now examine more briefly to what extent the set of conditions
(C1)-(C2) is necessary as well as sufficient. It is clear that condition (Cl) is
necessary, since if it is not fulfilled we can always put in the required "phase
jumps" on the order-1 NSD nodal hypersurfaces, and in fact attain in this
way f^0) =0 (or more precisely f̂ (0) ^0 , since we cannot a priori exclude
that there may be an even more energetically favorable solution!). As
regards (C2), let's first consider the case where translation invariance (but
not necessarily time reversal invariance) is either absent in the Hamiltonian
(as would be the case, for example, for a substantially cylindrically unsym-
metrical container) or spontaneously broken in the ground state. In the
latter case by definition, and in the former case automatically except con-
ceivably for very pathological cases, the many-particle ground state prob
ability density is a nontrivial function of the COM coordinate 0 for at least
some values of the relative coordinates {£'}. (and we can sharpen up the
definition of "spontaneously broken symmetry" to ensure that the latter do
not form a set of zero measure). Unfortunately, this feature alone appears
insufficient for a proof that f s(0)<l, since any variational ansatz must

2 One could of course leave out the "NSD;" for the reason it is included, see next paragraph.
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respect (5) and not just (15). On the other hand, a variational proof based
on (11) requires that the single-particle probability density p(9) be a non-
trivial function of 6: see Eq. (12). Is it, then, conceivable that po(0, {£'})
should be a nontrivial function of 0 while simultaneously p(6) is constant
as a function of 01 At the time of writing I have been unable to find a
rigorous and general proof to exclude this possibility, but it seems extra-
ordinarily improbable. If indeed p(0) is a nontrivial function of 0, while
condition (1) and the condition of unbroken time reversal invariance still
hold, one would expect that 0 < / , < 1; an example of such a situation, the
hypothetical "supersolid" phase of a boson system, was discussed in ref. 5.

Finally, what happens if time reversal is either absent in the
Hamiltonian or spontaneously broken in the ground state, while condition
(Cl) and translation invariance (may) still hold? Here we recall that we are
explicitly dealing with systems with no internal degree of freedom such as
spin, so that the only relevant effect of the time reversal operation is on the
orbital variables. In general, if the ground state lacks time reversal
invariance, then the quantity fs(0) is not even defined, since by a correct
choice of the sign of the symmetry breaking and a variational ansatz of the
form (9) it will be possible to produce a term linear in |d<p\ and hence non-
analytic at dcp = 0. It is clear that a sufficient condition for this situation to
hold is that the ground state expectation value <L> of the angular momen-
tum be nonzero. Is this also a necessary condition? i.e., if the ground state
breaks time reversal invariance, but in such a way that <L> =0 (as con-
ceivably might happen in a hypothetical system of spinless fermions with
p-wave BCS pairing, for example), would f̂ (O) necessarily be defined and
equal to 1?3 My instinct is no (i.e., that f^0) would not be defined, for the
reason given above), but at the time of writing I have been unable to con-
struct a generic proof.

To summarize, for the one-component system with velocity-indepen-
dent forces discussed so far, (C1) is a necessary condition for Eq. (2) to
hold, and (C2) is also necessary if we exclude the kind of semi-pathological
situations discussed in the last two paragraphs. We can further state that
if translation-invariance is not spontaneously broken in the ground state,
then quite generally either fs(0) = 1 or fs(0)^0, i.e., the system is either
(super-)normal or "completely" superfluid.

It is straightforward to generalize the above considerations to a multi-
component system, bearing in mind that the relation between Aq and w
will be different for particles of different mass. When we do so, we find that

3 It is worthwhile to emphasize that simple application of a standard Galilean transformation
does not answer this question, any more then it would for the "supersolid."
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translation-invariance no longer guarantees that fs(0) must be either ( < )
0 or 1, as in the single-component case; the reason is that since (e.g.) not
all N order-1 trajectories are now equivalent, some may intersect NSD
nodal hypersurfaces while others do not. If we call the first class A and the
second B, then we can apply to the type-B atoms the same argument as we
used above to arrive at Eq. (12), while the type-A atoms will give zero con-
tribution to the RHS of Eq. (10). In this way we obtain the result fs(0) <
PA/(PA+ PB)> where pAB denotes the mass densities of the two species.
This result agrees with the conclusions of analyses based on specific
microscopic models, e.g., of dilute solutions of 3He in 4He. (In the latter
system, it can be shown that the T=0 normal density (i.e., ( l - f , ( 0 ) )
(PA + PB)) is equal to the number density of 3He atoms times the "dynamic
effective mass;" since the latter is always ^ the bare 3He mass,(12) the
above result follows).

Note that from the point of view of the present discussion (see par-
ticularly last paragraph) any internal degree of freedom such as spin
automatically makes the system "multicomponent," so that the conclusions
proved in the main body of the text cannot be assumed to hold without
further argument. For the case of spin 1/2, provided that time reversal
invariance applied to the orbital coordinates alone is a good symmetry, one
may use overall time reversal invariance to argue that the two spin species
must behave identically, and thus the pair of conditions (C1)-(C2) above
remain both necessary and sufficient for (2) to hold. To see that this exten-
sion is not entirely trivial, consider the case of a, spin-1 Fermi system such
as is effectively formed4 by atomic 6Li (see ref. 11). If this system forms
Cooper pairs, they may or may not spontaneously break time reversal
invariance, but even if they do not it is shown in ref. 11 that the superfluid
fraction at zero temperature will be different from unity (this is essentially
because one of the three spin species will inevitably be "left out" of the
pairing and will thus effectively form a normal component).

In conclusion, in this paper I have shown that for a one-component
system with velocity-independent forces there exists a set of sufficient and
(barring pathologies) necessary conditions for the superfluid fraction at
zero temperature to be equal to unity, namely the conditions (C1)-(C2)
above. I have also indicated how to generalize some of the results to a
multicomponent system.

4 Admittedly, in real life the system as considered in ref. 11 could only be stabilized by a high
magnetic field, which automatically breaks time reversal invariance. However, there seems
no internal inconsistency in a model in which this feature is absent.
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Apart from trivial questions of normalization, etc., it is clear that the
problem of finding either the value of fs, or upper and/or lower limits on
it, is precisely that discussed at several different points in the text, with dif-
ferent choices of z and £. As noted in ref. 13 (where it is discussed for the
special case of £, 2-dimensional), it is in that case also exactly isomorphic
to a problem of classical electrostatics, namely the problem of finding the
capacitance of a condenser filled with a material of arbitrarily but con-
tinuously varying isotropic dielectric constant (and I should not be at all
surprised to find that the theorems proved below are given in some
nineteenth-century textbook on that subject, though if so I have so far
failed to find it!)

A. Upper Limit on fs

Defining the quantity p(z) = \ p{z, £) d£, we make the variational
ansatz
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APPENDIX

In this appendix I use for the sake of clarity dimensionless variables.
However, to emphasize the connection with the (dimensional) variables
used in the main text of the paper, I denote the former by the corresponding
symbols (£, E, etc.)

Consider a system described by a single "longitudinal" coordinate z,
where O ^ z s j l , and a set of transverse coordinates which for notational
simplicity I label simply £. A real, positive, normalized and continuous
function p(z, £) satisfying p( 1, £,) = p(0, £), V£ is specified, and it is require
to find the minimum value of the functional

over a real function <p(z,£) satisfying the boundary condition

In Eq. (1) the notation {Y(<p)2 is simply a schematic representation of the
squared gradient with respect to all the e-coordinates. The "superfluid frac-
tion" fs is defined by



940

where K(X, sx) is some positive "Jacobian" weighting factor which will
depend in detail on the specification of the "trajectories" z(A, sx), £(A, sx).
(e.g., for all trajectories parallel to one another K{k, sx) is simply unity).

C. A More General Lower Limit (Schematic)

We can generalize the argument leading to (A7) by considering an
arbitrary collection of paths which run from (0, £} to (1, £) for all possible
values of £, provided that we re-parametrize the space appropriately (in
(B) we considered only linear paths parallel to the z-axis). If A parametrizes
the particular path (k might for example be the value of £ at which the
path starts and ends) and sx the distance along it, then schematically we
can write the resulting lower limit on fs in the form

In the special case of p(z, £) factorizable, i.e., p(z, £,) — p{z) g(£), the limits
(A5) and (A7) coincide and thus the exact result is

Leggett

and substitute in (A1). This gives

B. Lower Limit on fs

It is clear that the term in (V#>)2 in (Al) is positive, so we can find a
lower limit on E, and hence on fs by finding the exact minimum of the first
term. A straightforward use of the standard calculus of variations show
that this is achieved by setting

where the function f(£) is chosen so as to satisfy Eq. (A2). Substitution of
(A6) into (A2) gives
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Assuming that it is always possible to choose the trajectories so that
K{k, sx) is everywhere nonzero, then we see that fs must be greater than
zero unless every possible path (0, £) -> (1, £) for every value of £ crosses a
nodal hypersurface. This is the result needed in the text.

ACKNOWLEDGMENTS

It is a pleasure to dedicate this paper to Leo Kadanoff on the occasion
of his 60th birthday, and to wish him many more happy years of activity
in physics. This work was supported by the National Science Foundation
under Grant DMR-96-14133.

C. N. Yang, Revs. Mod. Phys. 34:694 (1962).
W. Kohn, Phys. Rev. A 133:171 (1964).
W. Kohn and D. Sherrington, Revs. Mod. Phys. 42:1 (1970).
F. Bloch, Phys. Rev. B 2:109 (1970).
A. J. Leggett, Phys. Rev. Lett. 25:1543 (1970).
A. J. Leggett, Physica Fennica 8:125 (1973).
A. J. Leggett, in Granular Nanoelectronics, D. K. Ferry, J. R. Barber, and C. Jacoboni, ed.,
NATO ASI Ser. B, Vol. 251 (Plenum, New York, 1991), p. 297: cf. also D. Loss, Phys.
Rev. Lett. 69:343 (1992).
A. I. Larkin and A. B. Migdal, Zh. Eksp. Teor. Fiz. 44:1703 (1963) [translation: Soviet
Phys.-JETP 17:1146 (1963)].
J. Gavoret and P. Nozieres, Ann. Phys. 28:349 (1964).
I. M. Khalatnikov, An Introduction to the Theory of Superfluidity, trans. Pierre C. Hohen-
berg (Benjamin, New York, 1965).
A. J. Leggett and A. G. K. Modawi, J. Low Temp. Phys. 109:625 (1997).
A. J. Leggett, Ann. Phys. 46:76 (1968).
I. Zapata, F. Sols, and A. J. Leggett, Phys. Rev. A 57:28 (1998).

1.
2.
3.
4.
5.
6.
7.

8.

9.
10.

11.
12.
13.


